(ZH-EN Translation by DeepSeek-V3-0324)

Background

Recently, the national key lab planned to initiate work on intelligent circuit design, and while preparing materials, we often needed circuit schematics as examples. However, there were no readily available tools to conveniently draw these schematics. Existing schematic drawing tools require manually placing each component and connecting each wire one by one. Even drawing a small-scale example involves tedious operations. For instance, a 4-bit adder contains hundreds of transistors, and manually placing components for larger examples becomes nearly as labor-intensive as designing a 4004 processor from scratch. Moreover, real synthesis and placement and routing (PNR) tools are not only cumbersome to invoke but also produce visually unappealing diagrams. As a result, I have always resorted to writing my own scripts to generate these diagrams.

Initially, I used Python with PIL (Python Imaging Library) to draw the schematics. I wrote a few basic functions to draw transistors and logic gates at specified positions, but the placement and routing still had to be designed manually, resulting in low efficiency. I then decided to add simple placement and routing logic to the script to automate the entire workflow from input circuit netlists to output schematics. Here is the final result:

For computationally intensive tasks like placement and routing, I immediately abandoned Python in favor of C++ to avoid waiting an entire day to generate a single diagram. The routing algorithm reused a maze routing implementation I had previously written for another project. I then pasted the routing code into DeepSeek and asked it to complete the placement code. DeepSeek-V3-0324 demonstrated impressive coding capabilities, producing functional and complete code that worked right away. With the help of the large language model, along with some research and clever ideas, abandoning PIL did not cause much pain. DeepSeek provided code for outputting PNGs, extracting BDF bitmap fonts, and helped debug a bug in the diagonal line rasterization algorithm.

Thus, I quickly implemented this ~800-line automated circuit placement and routing program that takes BLIF as input and outputs PNGs. It is entirely self-contained, with dependencies limited to the C++ Standard Template Library (STL). Even as someone who has been programming since childhood, this coding experience was entirely new to me, showcasing how large language models are reshaping the programming experience. Without such models, reading RFCs for PNG, BDF, DEFLATE, and writing low-level functions would have been extremely painful, and I would never have attempted it.

Abandoning Python and returning to C++ has never been easier, and presumably, the same applies to abandoning CUDA. In this era, ecosystem barriers are being weakened across the board—an exciting trend!

Code

The code uses C++26. Currently, only GCC 15.0 can compile it, but since 15.0 has not yet been released, I compiled the latest GCC from source.

This is my first extensive use of the ranges library, and the experience has been great—it often saves a lot of unnecessary verbosity. The current ranges implementation still lacks some features, such as a reverse drop (removing elements from the end of a range). It’s also inconvenient to determine whether a loop iteration is the first or last, making the old-fashioned way of writing loops sometimes preferable.

The C++ standard also lacks some key containers, such as a trie—why hasn’t this been added yet? The performance of some older containers has long been criticized, and it’s time for a refresh. The latest standard provides flat_map, but in my testing, it showed no performance advantage in my use case. I didn’t see an unordered_flat_map. Hopefully, these new features will avoid repeating the mistakes of regex.

Expand code
cirschem.cppview raw
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
/* ============================================================================
place and route a standard CMOS circuit schematic.
input: Berkeley Logic Interchange Format (BLIF)
output: black-white schematic image (PNG)

compiling options: g++ cirschem.cpp -std=c++26 -O3
requires c++26 (g++15 or above)

Copyright (c) 2025 zhaoyongwei<zhaoyongwei@ict.ac.cn>
IPRC, ICT CAS. Visit https://yongwei.site/pnr-circuit-schematic

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

* ============================================================================ */

#include <iostream>
#include <format>
#include <fstream>
#include <string>
#include <vector>
#include <deque>
#include <array>
#include <tuple>
#include <set>
#include <map>
#include <unordered_map>
#include <utility>
#include <algorithm>
#include <ranges>
#include <random>
#include <cmath>
#include <cstdint>
#include <chrono>
using namespace std::chrono_literals;
using namespace std::literals;

// simulated annealing placement parameters
constexpr double initial_temperature = std::exp(5);
constexpr double cooling_rate = 0.99999;
constexpr double stop_temperature = 0.1;
constexpr auto step_timeout = 5ms;
// placement optimizing target
constexpr double initial_area_margins = std::exp(1);
constexpr int area_cost = 5;
constexpr int cross_track_penalty = 50;
// output file name
constexpr auto schematic_filename = "schematic.png";

enum {
NOT = 0,
NAND = 1,
};

std::tuple<std::set<int>,
std::set<int>,
std::unordered_map<int, std::pair<int, std::vector<int>>>,
std::vector<std::string>>
parse(int argc, char* argv[]) {

std::set<int> inputs;
std::set<int> outputs;
std::unordered_map<int, std::pair<int, std::vector<int>>> gates;
std::vector<std::string> names {"NOT"s, "NAND"s};
std::map<std::string, int> name_ids {{"NOT"s, 0}, {"NAND"s, 1}}; // compromised alt for trie.
auto parse_name = [&](std::string str) {
if (!name_ids.contains(str)) {
name_ids.emplace(str, names.size());
names.push_back(str);
}
return name_ids.at(str);
};

if (argc < 2) {
std::cerr << "Usage: " << argv[0] << " <blif_file>\n";
return {inputs, outputs, gates, names};
}

std::ifstream blif(argv[1]);
if (!blif.is_open()) {
std::cerr << "Error opening file: " << argv[1] << '\n';
return {inputs, outputs, gates, names};
}

std::string line;
while (std::getline(blif, line)) {
if (line.starts_with(".inputs")) {
size_t start = 7; // length of ".inputs"
while (start < line.size()) {
size_t end = line.find(' ', start);
if (end == std::string::npos) end = line.size();
std::string token = line.substr(start, end - start);
if (!token.empty()) {
inputs.insert(parse_name(token));
}
start = end + 1;
}
} else if (line.starts_with(".outputs")) {
size_t start = 8; // length of ".outputs"
while (start < line.size()) {
size_t end = line.find(' ', start);
if (end == std::string::npos) end = line.size();
std::string token = line.substr(start, end - start);
if (!token.empty()) {
outputs.insert(parse_name(token));
}
start = end + 1;
}
} else if (line.starts_with(".subckt")) {
std::vector<int> ports;
size_t start = 8; // length of ".subckt"
while (start < line.size()) {
size_t end = line.find(' ', start);
if (end == std::string::npos) end = line.size();
std::string token = line.substr(start, end - start);
if (!token.empty()) {
size_t start = token.find('=', 0);
if (start != std::string::npos) {
token = token.substr(start+1, token.size());
}
ports.push_back(parse_name(token));
}
start = end + 1;
}
int gate = ports.front();
int name = ports.back();
ports.erase(ports.begin());
ports.pop_back();
gates[name] = { gate, ports };
}
}

return {inputs, outputs, gates, names};
}

template<typename T, T... Ints>
constexpr auto make_crc_table(std::integer_sequence<T, Ints...> is) {
return std::array<T, sizeof...(Ints)>{ [](T n){
for (int k : std::views::iota(0,8)) n = (n>>1)^(n&1?0xedb88320:0); return n;
}(Ints)...};
}
constexpr auto crc_table{ make_crc_table(std::make_integer_sequence<uint32_t, 256>{}) };

template<typename T>
constexpr uint32_t crc(const T& buf) {
return ~std::ranges::fold_left(buf, 0xffffffff, [](uint32_t c, uint8_t d){
return crc_table[(c ^ d) & 0xff] ^ (c>>8);
});
}

template<typename T>
constexpr uint32_t adler32(const T& buf) {
return std::ranges::fold_left(buf, 1, [](uint32_t ab, uint8_t d){
auto a = ((ab & 0xffff) + d) % 65521; return a | ((((ab >> 16) + a) % 65521) << 16);
});
}

template<typename Iter, typename T>
void insert_be(Iter it, T value) {
auto value_be = std::endian::native == std::endian::little ? std::byteswap(value) : value;
auto arr = std::bit_cast<std::array<uint8_t,sizeof(T)>>(value_be);
std::ranges::copy(arr, it);
}
template<typename Iter, typename T>
void insert_le(Iter it, T value) {
auto value_le = std::endian::native == std::endian::big ? std::byteswap(value) : value;
auto arr = std::bit_cast<std::array<uint8_t,sizeof(T)>>(value_le);
std::ranges::copy(arr, it);
}

std::vector<uint8_t> deflate(const std::vector<uint8_t>& data) {
std::vector<uint8_t> compressed_data;
auto it = std::back_inserter(compressed_data);
for (auto chunk : data | std::views::chunk(0xfffb)) {
*it = 0;
insert_le(it, static_cast<uint16_t>( chunk.size()));
insert_le(it, static_cast<uint16_t>(~chunk.size()));
std::ranges::copy(chunk | std::views::transform(std::bit_not<uint8_t>{}), it);
}
compressed_data[(compressed_data.size()-1) & ~0xffffULL] = 0x1;
return compressed_data;
}

constexpr std::array<std::tuple<int,std::array<uint16_t,8>>,96> font {{
{ 0, {0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000}}, //
{ 0, {0x0000,0x0000,0x0380,0x6FC0,0x6FC0,0x0380,0x0000,0x0000}}, // !
{ 6, {0x0000,0x3800,0x7800,0x0000,0x0000,0x7800,0x3800,0x0000}}, // "
{ 0, {0x1100,0x7FC0,0x7FC0,0x1100,0x7FC0,0x7FC0,0x1100,0x0000}}, // #
{-2, {0x0CE0,0x19F0,0x1110,0x711C,0x711C,0x1F30,0x0E60,0x0000}}, // $
{ 0, {0x4300,0x6300,0x3000,0x1800,0x0C00,0x6600,0x6300,0x0000}}, // %
{ 0, {0x3800,0x7D80,0x47C0,0x4E40,0x3BC0,0x7D80,0x4400,0x0000}}, // &
{ 6, {0x0000,0x4000,0x7800,0x3800,0x0000,0x0000,0x0000,0x0000}}, // '
{ 0, {0x0000,0x0000,0x1F00,0x3F80,0x60C0,0x4040,0x0000,0x0000}}, // (
{ 0, {0x0000,0x0000,0x4040,0x60C0,0x3F80,0x1F00,0x0000,0x0000}}, // )
{ 2, {0x1000,0x5400,0x7C00,0x3800,0x3800,0x7C00,0x5400,0x1000}}, // *
{ 2, {0x0000,0x1000,0x1000,0x7C00,0x7C00,0x1000,0x1000,0x0000}}, // +
{-1, {0x0000,0x0000,0x4000,0x7800,0x3800,0x0000,0x0000,0x0000}}, // ,
{ 4, {0x4000,0x4000,0x4000,0x4000,0x4000,0x4000,0x4000,0x0000}}, // -
{ 0, {0x0000,0x0000,0x0000,0x6000,0x6000,0x0000,0x0000,0x0000}}, // .
{ 1, {0x6000,0x3000,0x1800,0x0C00,0x0600,0x0300,0x0180,0x0000}}, // /
{ 0, {0x3F80,0x7FC0,0x4C40,0x4640,0x4340,0x7FC0,0x3F80,0x0000}}, // 0
{ 0, {0x0000,0x4100,0x4180,0x7FC0,0x7FC0,0x4000,0x4000,0x0000}}, // 1
{ 0, {0x6080,0x70C0,0x5840,0x4C40,0x4640,0x63C0,0x6180,0x0000}}, // 2
{ 0, {0x2080,0x60C0,0x4440,0x4440,0x4440,0x7FC0,0x3B80,0x0000}}, // 3
{ 0, {0x0C00,0x0E00,0x0B00,0x4980,0x7FC0,0x7FC0,0x4800,0x0000}}, // 4
{ 0, {0x27C0,0x67C0,0x4440,0x4440,0x4440,0x7C40,0x3840,0x0000}}, // 5
{ 0, {0x3F00,0x7F80,0x44C0,0x4440,0x4440,0x7C00,0x3800,0x0000}}, // 6
{ 0, {0x00C0,0x00C0,0x7840,0x7C40,0x0640,0x03C0,0x01C0,0x0000}}, // 7
{ 0, {0x3B80,0x7FC0,0x4440,0x4440,0x4440,0x7FC0,0x3B80,0x0000}}, // 8
{ 0, {0x0380,0x47C0,0x4440,0x4440,0x6440,0x3FC0,0x1F80,0x0000}}, // 9
{ 1, {0x0000,0x0000,0x0000,0x6300,0x6300,0x0000,0x0000,0x0000}}, // :
{ 0, {0x0000,0x0000,0x4000,0x7180,0x3180,0x0000,0x0000,0x0000}}, // ;
{ 0, {0x0000,0x0400,0x0E00,0x1B00,0x3180,0x60C0,0x4040,0x0000}}, // <
{ 2, {0x0000,0x4800,0x4800,0x4800,0x4800,0x4800,0x4800,0x0000}}, // =
{ 0, {0x0000,0x4040,0x60C0,0x3180,0x1B00,0x0E00,0x0400,0x0000}}, // >
{ 0, {0x0180,0x01C0,0x0040,0x6C40,0x6E40,0x03C0,0x0180,0x0000}}, // ?
{ 0, {0x3F80,0x7FC0,0x4040,0x5E40,0x5E40,0x5FC0,0x0F80,0x0000}}, // @
{ 0, {0x7E00,0x7F00,0x0980,0x08C0,0x0980,0x7F00,0x7E00,0x0000}}, // A
{ 0, {0x4040,0x7FC0,0x7FC0,0x4440,0x4440,0x7FC0,0x3B80,0x0000}}, // B
{ 0, {0x1F00,0x3F80,0x60C0,0x4040,0x4040,0x60C0,0x3180,0x0000}}, // C
{ 0, {0x4040,0x7FC0,0x7FC0,0x4040,0x60C0,0x3F80,0x1F00,0x0000}}, // D
{ 0, {0x4040,0x7FC0,0x7FC0,0x4440,0x4E40,0x60C0,0x71C0,0x0000}}, // E
{ 0, {0x4040,0x7FC0,0x7FC0,0x4440,0x0E40,0x00C0,0x01C0,0x0000}}, // F
{ 0, {0x1F00,0x3F80,0x60C0,0x4840,0x4840,0x38C0,0x7980,0x0000}}, // G
{ 0, {0x7FC0,0x7FC0,0x0400,0x0400,0x0400,0x7FC0,0x7FC0,0x0000}}, // H
{ 0, {0x0000,0x0000,0x4040,0x7FC0,0x7FC0,0x4040,0x0000,0x0000}}, // I
{ 0, {0x3000,0x7000,0x4000,0x4040,0x7FC0,0x3FC0,0x0040,0x0000}}, // J
{ 0, {0x4040,0x7FC0,0x7FC0,0x0400,0x1F00,0x7BC0,0x60C0,0x0000}}, // K
{ 0, {0x4040,0x7FC0,0x7FC0,0x4040,0x4000,0x6000,0x7000,0x0000}}, // L
{ 0, {0x7FC0,0x7FC0,0x0380,0x0700,0x0380,0x7FC0,0x7FC0,0x0000}}, // M
{ 0, {0x7FC0,0x7FC0,0x0380,0x0700,0x0E00,0x7FC0,0x7FC0,0x0000}}, // N
{ 0, {0x1F00,0x3F80,0x60C0,0x4040,0x60C0,0x3F80,0x1F00,0x0000}}, // O
{ 0, {0x4040,0x7FC0,0x7FC0,0x4440,0x0440,0x07C0,0x0380,0x0000}}, // P
{-1, {0x0FC0,0x1FE0,0x1020,0x1C20,0x7820,0x7FE0,0x4FC0,0x0000}}, // Q
{ 0, {0x4040,0x7FC0,0x7FC0,0x0440,0x0C40,0x7FC0,0x7380,0x0000}}, // R
{ 0, {0x3180,0x73C0,0x4640,0x4440,0x4C40,0x79C0,0x3180,0x0000}}, // S
{ 0, {0x0000,0x01C0,0x40C0,0x7FC0,0x7FC0,0x40C0,0x01C0,0x0000}}, // T
{ 0, {0x3FC0,0x7FC0,0x4000,0x4000,0x4000,0x7FC0,0x3FC0,0x0000}}, // U
{ 0, {0x0FC0,0x1FC0,0x3000,0x6000,0x3000,0x1FC0,0x0FC0,0x0000}}, // V
{ 0, {0x1FC0,0x7FC0,0x7000,0x3C00,0x7000,0x7FC0,0x1FC0,0x0000}}, // W
{ 0, {0x60C0,0x71C0,0x1F00,0x0E00,0x1F00,0x71C0,0x60C0,0x0000}}, // X
{ 0, {0x0000,0x03C0,0x47C0,0x7C00,0x7C00,0x47C0,0x03C0,0x0000}}, // Y
{ 0, {0x71C0,0x78C0,0x4C40,0x4640,0x4340,0x61C0,0x70C0,0x0000}}, // Z
{ 0, {0x0000,0x0000,0x7FC0,0x7FC0,0x4040,0x4040,0x0000,0x0000}}, // [
{ 0, {0x01C0,0x0380,0x0700,0x0E00,0x1C00,0x3800,0x7000,0x0000}}, //'\'
{ 0, {0x0000,0x0000,0x4040,0x4040,0x7FC0,0x7FC0,0x0000,0x0000}}, // ]
{ 7, {0x4000,0x6000,0x3000,0x1800,0x3000,0x6000,0x4000,0x0000}}, // ^
{-2, {0x4000,0x4000,0x4000,0x4000,0x4000,0x4000,0x4000,0x4000}}, // _
{ 8, {0x0000,0x0000,0x3000,0x7000,0x4000,0x0000,0x0000,0x0000}}, // `
{ 0, {0x3000,0x7A00,0x4A00,0x4A00,0x3E00,0x7C00,0x4000,0x0000}}, // a
{ 0, {0x0040,0x7FC0,0x7FC0,0x4200,0x4600,0x7C00,0x3800,0x0000}}, // b
{ 0, {0x3C00,0x7E00,0x4200,0x4200,0x4200,0x6600,0x2400,0x0000}}, // c
{ 0, {0x3800,0x7C00,0x4600,0x4240,0x3FC0,0x7FC0,0x4000,0x0000}}, // d
{ 0, {0x3C00,0x7E00,0x4A00,0x4A00,0x4A00,0x6E00,0x2C00,0x0000}}, // e
{ 0, {0x4400,0x7F80,0x7FC0,0x4440,0x00C0,0x0180,0x0000,0x0000}}, // f
{-2, {0x2700,0x6F80,0x4880,0x4880,0x7F00,0x3F80,0x0080,0x0000}}, // g
{ 0, {0x4040,0x7FC0,0x7FC0,0x0400,0x0200,0x7E00,0x7C00,0x0000}}, // h
{ 0, {0x0000,0x0000,0x4200,0x7EC0,0x7EC0,0x4000,0x0000,0x0000}}, // i
{-2, {0x0000,0x3000,0x7000,0x4000,0x4080,0x7FB0,0x3FB0,0x0000}}, // j
{ 0, {0x4040,0x7FC0,0x7FC0,0x0800,0x1C00,0x7600,0x6200,0x0000}}, // k
{ 0, {0x0000,0x0000,0x4040,0x7FC0,0x7FC0,0x4000,0x0000,0x0000}}, // l
{ 0, {0x7E00,0x7E00,0x0600,0x3C00,0x0600,0x7E00,0x7C00,0x0000}}, // m
{ 0, {0x0200,0x7E00,0x7C00,0x0200,0x0200,0x7E00,0x7C00,0x0000}}, // n
{ 0, {0x3C00,0x7E00,0x4200,0x4200,0x4200,0x7E00,0x3C00,0x0000}}, // o
{-2, {0x4080,0x7F80,0x7F00,0x4880,0x0880,0x0F80,0x0700,0x0000}}, // p
{-2, {0x0700,0x0F80,0x0880,0x4880,0x7F00,0x7F80,0x4080,0x0000}}, // q
{ 0, {0x4200,0x7E00,0x7C00,0x4600,0x0200,0x0E00,0x0C00,0x0000}}, // r
{ 0, {0x2400,0x6E00,0x4A00,0x5A00,0x5200,0x7600,0x2400,0x0000}}, // s
{ 0, {0x0200,0x0200,0x3F80,0x7FC0,0x4200,0x6200,0x2000,0x0000}}, // t
{ 0, {0x3E00,0x7E00,0x4000,0x4000,0x3E00,0x7E00,0x4000,0x0000}}, // u
{ 0, {0x0000,0x1E00,0x3E00,0x6000,0x6000,0x3E00,0x1E00,0x0000}}, // v
{ 0, {0x3E00,0x7E00,0x6000,0x3800,0x6000,0x7E00,0x3E00,0x0000}}, // w
{ 0, {0x4200,0x6600,0x3C00,0x1800,0x3C00,0x6600,0x4200,0x0000}}, // x
{-2, {0x4780,0x4F80,0x4800,0x4800,0x6800,0x3F80,0x1F80,0x0000}}, // y
{ 0, {0x4600,0x6600,0x7200,0x5A00,0x4E00,0x6600,0x6200,0x0000}}, // z
{ 0, {0x0000,0x0400,0x0400,0x3F80,0x7BC0,0x4040,0x4040,0x0000}}, // {
{ 0, {0x0000,0x0000,0x0000,0x7BC0,0x7BC0,0x0000,0x0000,0x0000}}, // |
{ 0, {0x0000,0x4040,0x4040,0x7BC0,0x3F80,0x0400,0x0400,0x0000}}, // }
{ 7, {0x4000,0x6000,0x2000,0x6000,0x4000,0x6000,0x2000,0x0000}}, // ~
{ 1, {0x7000,0x7800,0x4C00,0x4600,0x4C00,0x7800,0x7000,0x0000}} //
}};

struct draw_t {
size_t w, row_bytes;
size_t h;
std::vector<uint8_t> pixels;
draw_t(size_t w, size_t h) : w(w), row_bytes(1 + (w+7)/8), h(h), pixels(h * row_bytes) {
for (auto & x: pixels | std::views::stride(row_bytes))
x = 0xff;
}

void set_pixel(int x, int y, bool value) {
uint8_t m = 0x80 >> (x & 7);
size_t addr = y * row_bytes + 1 + x/8;
if (value) {
pixels[addr] |= m;
} else {
pixels[addr] &= ~m;
}
}
void set_hline(int x1, int x2, int y, bool value) {
uint8_t m1 = ((0x100 >> (x1 & 7)) - 1);
uint8_t m2 = ~((0x080 >> (x2 & 7)) - 1);
size_t base_addr = y * row_bytes + 1;
if (x1/8 == x2/8) {
if (value) {
pixels[base_addr + x1/8] |= m1 & m2;
} else {
pixels[base_addr + x1/8] &= ~(m1 & m2);
}
} else {
if (value) {
pixels[base_addr + x1/8] |= m1;
pixels[base_addr + x2/8] |= m2;
} else {
pixels[base_addr + x1/8] &= ~m1;
pixels[base_addr + x2/8] &= ~m2;
}
for (int addr : std::views::iota(base_addr + x1/8 + 1, base_addr + x2/8))
pixels[addr] = -!!value;
}
}
void set_slope(int x1, int x2, int y1, int y2, float thick, bool value) {
float slope = 1.0 * (x2 - x1) / std::abs(y2 - y1);
float tan = 0.5 / std::sqrt(1. + slope*slope);
int x_low = std::min<int>(std::max<int>(0, x1 - tan*thick), w-1);
int x_high = std::min<int>(std::max<int>(0, x2 + tan*thick), w-1);
for (int d : std::views::iota(0, std::abs(y2-y1)+1)) {
int l = (d + 0.5) * slope - tan * thick;
int r = (d + 1.5) * slope + tan * thick;
int y = y2 > y1 ? y1 + d : y1 - d;
l = std::max(x_low, std::min(l + x1, x_high));
r = std::max(l, std::min(r - 1 + x1, x_high));
set_hline(l, r, y, value);
}
}

void write_png(const std::string& filename) {
std::ofstream out(filename, std::ios::binary);
uint32_t width = w;
uint32_t height = h;
std::vector<uint8_t> png_data {137, 80, 78, 71, 13, 10, 26, 10};
auto png = std::back_inserter(png_data);
std::vector<uint8_t> ihdr_data {'I', 'H', 'D', 'R'};
auto ihdr = std::back_inserter(ihdr_data);
insert_be(ihdr, width);
insert_be(ihdr, height);
std::ranges::copy(std::array<uint8_t,5>{1,0,0,0,0}, ihdr);
insert_be(png, uint32_t{13});
std::ranges::copy(ihdr_data, png);
insert_be(png, crc(ihdr_data));
std::vector<uint8_t> compressed_data { deflate(pixels) };
insert_be(std::back_inserter(compressed_data), adler32(pixels));
constexpr std::array<uint8_t,6> idat_type {'I', 'D', 'A', 'T', 0x78, 0x01};
insert_be(png, static_cast<uint32_t>(compressed_data.size() + 2));
std::ranges::copy(idat_type, png);
std::ranges::copy(compressed_data, png);
insert_be(png, crc(std::views::concat(idat_type, compressed_data)));
constexpr std::array<uint8_t, 4> iend_type {'I', 'E', 'N', 'D'};
insert_be(png, uint32_t{0});
std::ranges::copy(iend_type, png);
insert_be(png, crc(iend_type));
out.write(reinterpret_cast<const char*>(png_data.data()), png_data.size());
}

struct kwargs_t {int fill = 0; int outline=0; int width = 1; int m = 0; int os = 0;};
void line(std::tuple<int,int,int,int> coord, kwargs_t kwargs) {
auto [x1,y1,x2,y2] = coord;
x1 = std::min<int>(w-1, std::max<int>(x1, 0));
x2 = std::min<int>(w-1, std::max<int>(x2, 0));
y1 = std::min<int>(h-1, std::max<int>(y1, 0));
y2 = std::min<int>(h-1, std::max<int>(y2, 0));
if (y1 == y2)
for (int i : std::views::iota(0,kwargs.width))
set_hline(std::min(x1, x2), std::max(x1, x2), y1 + (i+1)/2 * ((i&1)*2-1), !kwargs.fill);
else {
if (x1 > x2) {
std::tie(x1, x2) = std::tuple{x2, x1};
std::tie(y1, y2) = std::tuple{y2, y1};
}
set_slope(x1, x2, y1, y2, kwargs.width, !kwargs.fill);
}
}
void ellipse(std::tuple<int,int,int,int> coord, kwargs_t kwargs) {
auto [x1,y1,x2,y2] = coord;
std::tie(x1, x2) = std::tuple{std::min(x1, x2), std::max(x1, x2)};
std::tie(y1, y2) = std::tuple{std::min(y1, y2), std::max(y1, y2)};
int dx = (x2 - x1) + kwargs.width;
float ox = (x1 + x2) * 0.5;
float oy = (y1 + y2) * 0.5;
float ro = dx * 0.5, ri = dx * 0.5 - kwargs.width;
for (int y : std::views::iota(std::max(0,y1-kwargs.width), std::min<int>(h-1,y2+kwargs.width+1))) {
for (int x : std::views::iota(std::max(0,x1-kwargs.width), std::min<int>(w-1,x2+kwargs.width+1))) {
float rsq = (x-ox)*(x-ox) + (y-oy)*(y-oy);
if (rsq <= ri*ri)
set_pixel(x, y, !kwargs.fill);
else if (rsq <= ro*ro)
set_pixel(x, y, !kwargs.outline);
}
}
}
void text(std::tuple<int,int> coord, std::string text, std::string anchor) {
auto [l,t] = coord;
int length = text.size() * 8;
auto [r,b] = std::tuple{l + length, t + 15};
if (anchor[0] == 'r') {
l -= length; r -= length;
}
for (int x : std::views::iota(std::max(l,0),std::min<int>(r,w))) {
size_t nchr = (x - l) / 8;
size_t ncol = (x - l) & 7;
int chr = text[nchr];
if (chr > 0x7f or chr < 0x20) chr = '?';
const auto& [offset, dots] = font[chr - 0x20];

for (int y : std::views::iota(std::max(t-offset,0), std::min<int>(b-offset,h))) {
if ((dots[ncol] >> (y - t + offset)) & 1)
set_pixel(x, y, 1);
}
}

}
void mos(int x, int y) {
line({x+15,y+25,x+20,y+25},{.fill=1,.width=2});
line({x+15,y+10,x+15,y+40},{.fill=0,.width=2});
line({x+20,y+10,x+20,y+40},{.fill=0,.width=2});
line({x+25,y ,x+25,y+10},{.fill=0,.width=2});
line({x+25,y+40,x+25,y+50},{.fill=0,.width=2});
line({x+20,y+10,x+25,y+10},{.fill=0,.width=2});
line({x+20,y+40,x+25,y+40},{.fill=0,.width=2});
}
void nmos(std::tuple<int,int> coord) {
auto [x,y] = coord;
line({x,y+25,x+15,y+25},{.fill=0,.width=2});
mos(x, y);
}
void pmos(std::tuple<int,int> coord) {
auto [x,y] = coord;
line({x,y+25,x+11,y+25},{.fill=0,.width=2});
ellipse({x+11,y+22,x+15,y+27},{.fill=1,.outline=0,.width=2});
mos(x, y);
}
void inv(std::tuple<int,int> coord) {
auto [x,y] = coord;
ellipse({x+35-2,y-2,x+35+2,y+2},{.fill=0,.outline=0,.width=2});
line({x+35,y, x+35,y+10}, {.fill=0,.width=2});
pmos({x+10,y+10});
line({x+35,y+60, x+35,y+80}, {.fill=0,.width=2});
line({x+35,y+70, x+60,y+70}, {.fill=0,.width=2});
nmos({x+10,y+80});
line({x+35,y+130,x+35,y+140},{.fill=0,.width=2});
line({x+30,y+140,x+40,y+140},{.fill=0,.width=1});
line({x+30,y+140,x+35,y+145},{.fill=0,.width=1});
line({x+40,y+140,x+35,y+145},{.fill=0,.width=1});
line({x, y+35, x, y+105},{.fill=0,.width=2});
line({x, y+35, x+10,y+35}, {.fill=0,.width=2});
line({x, y+105,x+10,y+105},{.fill=0,.width=2});
}
void nand(std::tuple<int,int> coord) {
auto [x,y] = coord;
ellipse({x+35-2, y-2,x+35+2, y+2},{.fill=0,.outline=0,.width=2});
ellipse({x+115-2,y-2,x+115+2,y+2},{.fill=0,.outline=0,.width=2});
line({x+35, y, x+35, y+10}, {.fill=0,.width=2});
pmos({x+10,y+10});
line({x+115,y, x+115,y+10}, {.fill=0,.width=2});
pmos({x+90,y+10});
line({x+35, y+60, x+35, y+80}, {.fill=0,.width=2});
line({x+115,y+60, x+115,y+70}, {.fill=0,.width=2});
line({x+35, y+70, x+140,y+70}, {.fill=0,.width=2});
nmos({x+10,y+80});
nmos({x+90,y+80});
line({x+35, y+130,x+115,y+130},{.fill=0,.width=2});
line({x+115,y+80, x+130,y+80}, {.fill=0,.width=2});
line({x+130,y+80, x+130,y+140},{.fill=0,.width=2});
line({x+125,y+140,x+135,y+140},{.fill=0,.width=1});
line({x+125,y+140,x+130,y+145},{.fill=0,.width=1});
line({x+135,y+140,x+130,y+145},{.fill=0,.width=1});
line({x, y+35, x, y+105},{.fill=0,.width=2});
line({x, y+35, x+10, y+35}, {.fill=0,.width=2});
line({x, y+105,x+10, y+105},{.fill=0,.width=2});
line({x+80, y+35, x+80, y+105},{.fill=0,.width=2});
line({x+80, y+35, x+90, y+35}, {.fill=0,.width=2});
line({x+80, y+105,x+90, y+105},{.fill=0,.width=2});
}
};

const std::unordered_map<int, std::tuple<int, int>> CELL_SIZE = {
{NOT, {12, 28}},
{NAND, {28, 28}}
};
const std::unordered_map<int, std::vector<std::tuple<int, int>>> PORT_OFFSET = {
{NOT, {{0,14},{12,14}}},
{NAND, {{0,14},{16,14},{28,14}}}
};

constexpr auto operator+(const std::tuple<int,int>& lhs, const std::tuple<int,int>& rhs) {
return std::tuple{std::get<0>(lhs)+std::get<0>(rhs), std::get<1>(lhs)+std::get<1>(rhs)};
}

std::tuple<long,
std::vector<std::vector<std::tuple<int,int>>>,
std::vector<std::tuple<int,int>>>
route(const std::set<int>& inputs,
const std::set<int>& outputs,
const std::unordered_map<int, std::pair<int, std::vector<int>>>& gates,
const std::unordered_map<int, std::tuple<int,int>>& placement,
size_t canvas_w, size_t canvas_h) {
std::vector<std::tuple<int,int,int,int,int,int>> todo;
std::vector<std::vector<std::tuple<int,int>>> paths;
std::vector<std::tuple<int,int>> solders;
std::vector<int> drive(canvas_w*canvas_h);
std::vector<int> mask(canvas_w*canvas_h);
auto at = [canvas_h](size_t x, size_t y){ return x*canvas_h + y; };
long cost = 0;
for (const auto& [sink, values] : gates) {
const auto& [sinkgatetype, inports] = values;
for (const auto& [i, source] : std::views::enumerate(inports)) {
if (inputs.contains(source) or outputs.contains(source)) continue;
auto sourcegatetype = gates.at(source).first;
auto [x1, y1] = placement.at(source) + PORT_OFFSET.at(sourcegatetype).back();
auto [x2, y2] = placement.at(sink) + PORT_OFFSET.at(sinkgatetype)[i];
auto semipm = std::abs(x1 - (int)canvas_w/2) + std::abs(y1 - (int)canvas_h/2);

todo.emplace_back(semipm, x1, y1, x2, y2, source);
}
static const std::unordered_map<int, void(*)(int,int,size_t,decltype(mask)&)> mask_func {
{NOT, +[](int X, int Y, size_t canvas_h, decltype(mask)& mask){
for (size_t x = X+1; x <= X+11; x++) for (size_t y = Y-2; y <= Y+30; y++) {
mask[x*canvas_h + y] = 3;
}
} },
{NAND, +[](int X, int Y, size_t canvas_h, decltype(mask)& mask){
for (size_t x = X+1; x <= X+15; x++) for (size_t y = Y-2; y <= Y+30; y++) {
mask[x*canvas_h + y] = 3;
}
for (size_t x = X+15; x <= X+17; x++) for (size_t y = Y+8; y <= Y+20; y++) {
mask[x*canvas_h + y] = 3;
}
for (size_t x = X+17; x <= X+27; x++) for (size_t y = Y-2; y <= Y+30; y++) {
mask[x*canvas_h + y] = 3;
}
} },
};
auto [X, Y] = placement.at(sink);
(*mask_func.at(sinkgatetype))(X, Y, canvas_h, mask);
}
for (size_t x = 0; x < canvas_w; x++) for (size_t y = 5; y < canvas_h; y+=40) {
mask[at(x,y)] = 1;
}
std::sort(todo.begin(), todo.end());
int done = 0;
for (auto [_, x1, y1, x2, y2, driver_id] : todo) {
std::vector<int> mark(canvas_w*canvas_h);
bool marked = true, reached = false;
int i = 0;
size_t x, y;
for (y = y2-7; y <= y2+7; y++)
mark[at(x2,y)] = 1;
do { i++;
[&](){
marked = false;
for (x = 0; x < canvas_w; x++) for (y = 0; y < canvas_h; y++) {
if (mark[at(x,y)] == i) {
marked = true;
if (drive[at(x,y)] == driver_id or (x == x1 and y == y1)) {
reached = true; return;
}
if (x+1<canvas_w and (mask[at(x,y)] & 1) == 0 and !mark[at(x+1,y)])
mark[at(x+1,y)] = i+1;
if (x>=1 and (mask[at(x-1,y)] & 1) == 0 and !mark[at(x-1,y)])
mark[at(x-1,y)] = i+1;
if (y+1<canvas_h and (mask[at(x,y)] & 2) == 0 and !mark[at(x,y+1)])
mark[at(x,y+1)] = i+1;
if (y>=1 and (mask[at(x,y-1)] & 2) == 0 and !mark[at(x,y-1)])
mark[at(x,y-1)] = i+1;
}
}
}();
} while (marked and !reached);
if (!marked) {
std::cout << "\nerror: routing failed" << std::endl;
return { -1, paths, solders };
}
if (x != x1 or y != y1) solders.emplace_back(x,y);
decltype(paths)::value_type path;
int k = 1;
while (mark[at(x,y)] > 1) {
path.emplace_back(x,y);
drive[at(x,y)] = driver_id;
cost += 1;
if (k == 0 and x>=1 and mark[at(x-1,y)] > 0 and mark[at(x-1,y)] < mark[at(x,y)]) {
mask[at(x-1,y)] |= 1;
x--;
} else if (k == 1 and x+1 < canvas_w and mark[at(x+1,y)] > 0 and mark[at(x+1,y)] < mark[at(x,y)]) {
mask[at(x,y)] |= 1;
x++;
} else if (k == 2 and y>=1 and mark[at(x,y-1)] > 0 and mark[at(x,y-1)] < mark[at(x,y)]) {
mask[at(x,y-1)] |= 2;
y--;
} else if (k == 3 and y+1 < canvas_h and mark[at(x,y+1)] > 0 and mark[at(x,y+1)] < mark[at(x,y)]) {
mask[at(x,y)] |= 2;
y++;
} else if (x>=1 and mark[at(x-1,y)] > 0 and mark[at(x-1,y)] < mark[at(x,y)]) {
mask[at(x-1,y)] |= 1;
mask[at(x,y)] |= 2;
x--; k = 0;
} else if (x+1 < canvas_w and mark[at(x+1,y)] > 0 and mark[at(x+1,y)] < mark[at(x,y)]) {
mask[at(x,y)] |= 3;
x++; k = 1;
} else if (y>=1 and mark[at(x,y-1)] > 0 and mark[at(x,y-1)] < mark[at(x,y)]) {
mask[at(x,y)] |= 1;
mask[at(x,y-1)] |= 2;
y--; k = 2;
} else if (y+1 < canvas_h and mark[at(x,y+1)] > 0 and mark[at(x,y+1)] < mark[at(x,y)]) {
mask[at(x,y)] |= 3;
y++; k = 3;
} else {
std::cout << "\nerror: routing failed" << std::endl;
return { -1, paths, solders };
}
}
path.emplace_back(x,y);
drive[at(x,y)] = driver_id;
paths.push_back(std::move(path));
solders.emplace_back(x,y);
for (y = y2-7; y <= y2+7; y++)
drive[at(x2,y)] = driver_id;
done++;
std::cout << "[" << std::string(done * 70 / todo.size(), '=')
<< '>' << std::string(70 - done * 70 / todo.size(), '.')
<< std::format("] {:3d}%\r", done * 100 / todo.size());
}
std::cout << std::endl;
return { cost, paths, solders };
}

std::tuple<size_t,size_t> snap_to_microgrid(
std::unordered_map<int, std::tuple<int,int>>& placement,
const std::unordered_map<int, std::pair<int, std::vector<int>>>& gates,
double slackness) {
int min_x = std::numeric_limits<int>::max();
int min_y = std::numeric_limits<int>::max();
int max_x = 0;
int max_y = 0;
for (auto& [gate, coord] : placement) {
auto& [x, y] = coord;
x = std::ceil(x * 2 * slackness); y = y * 40;
min_x = std::min(x, min_x);
min_y = std::min(y, min_y);
}
for (auto& [gate, coord] : placement) {
auto& [x, y] = coord;
x = x - min_x + 10; y = y - min_y + 5;
auto [gate_size_x, gate_size_y] = CELL_SIZE.at(std::get<0>(gates.at(gate)));
max_x = std::max(max_x, x + gate_size_x);
max_y = std::max(max_y, y + gate_size_y);
}
return std::tuple<size_t,size_t>{ max_x + 10, max_y + 5 };
}

double fast_route_estimate(
const std::unordered_map<int, std::tuple<int,int>>& placement,
const std::set<int>& inputs, const std::set<int>& outputs,
const std::unordered_map<int, std::pair<int, std::vector<int>>>& gates) {
std::vector<std::tuple<int,int,int>> connections;
auto [l, t] = placement.cbegin()->second;
auto [r, b] = placement.cbegin()->second;
for (const auto& [sink, values] : gates) {
const auto& [sinkgatetype, inports] = values;
auto [x, y] = placement.at(sink);
l = std::min(l, x); t = std::min(t, y);
r = std::max(r, x); b = std::max(b, y);
for (const auto& [i, source] : std::views::enumerate(inports)) {
if (inputs.contains(source) or outputs.contains(source)) continue;
connections.emplace_back(source, sink, i);
}
}
double cost = (r-l) * (b-t) * area_cost;
for (const auto& [source, sink, port_id] : connections) {
auto [sx, sy] = placement.at(source);
auto [dx, dy] = placement.at(sink);
auto [source_xoff, source_yoff] = PORT_OFFSET.at(std::get<0>(gates.at(source))).back();
auto [sink_xoff, sink_yoff] = PORT_OFFSET.at(std::get<0>(gates.at(sink )))[port_id];
cost += std::abs((sx+source_xoff)-(dx+sink_xoff)) + std::abs(((sy+source_yoff)-(dy+sink_yoff))*40);
cost += (sy == dy) ? 0 : cross_track_penalty;
}
return cost;
}

std::unordered_map<int, std::tuple<int,int>> place(
std::set<int> inputs, std::set<int> outputs,
const std::unordered_map<int, std::pair<int, std::vector<int>>>& gates) {
double temperature = initial_temperature;
std::unordered_map<int, std::tuple<int,int>> placement;
auto is_overlapping = [&](const decltype(placement)& placement) {
std::deque<std::map<int,int>> track;
int min_track = 0;
for (const auto& [gate, coord] : placement) {
const auto& [x, y] = coord;
const auto& gatetype = std::get<0>(gates.at(gate));
auto [width, _] = CELL_SIZE.at(gatetype);
int l = x, r = x + width/2;

if (y - min_track >= (int)track.size()) {
track.append_range(std::views::repeat(std::map<int,int>{}, y - min_track - track.size() + 1));
track.back().emplace(l, r);
} else if (y - min_track < 0) {
track.prepend_range(std::views::repeat(std::map<int,int>{}, min_track - y));
min_track = y;
track.front().emplace(l, r);
} else {
auto& occupacy = track[y - min_track];
auto il = std::ranges::upper_bound(std::views::values(occupacy), l).base();
auto ir = occupacy.lower_bound(r);
if (il == ir) occupacy.emplace_hint(ir, l, r);
else return true;
}
}
return false;
};
int estimated_tracks = std::round(std::sqrt(gates.size() * initial_area_margins));
std::mt19937 rng(std::random_device{}());
for (const auto& [gate, values] : gates) {
const auto& gatetype = std::get<0>(values);
do {
int new_x = std::uniform_int_distribution<int>(0, estimated_tracks * 20)(rng);
int new_y = std::uniform_int_distribution<int>(0, estimated_tracks )(rng);
placement[gate] = {new_x, new_y};
} while (is_overlapping(placement));
}
double current_energy = fast_route_estimate(placement, inputs, outputs, gates);
auto best_placement{ placement };
auto best_energy{ current_energy };
auto choice = std::uniform_int_distribution<int>(0, placement.size()-1);
auto gauss = std::normal_distribution<double>(0, 1);
auto dice = std::uniform_real_distribution<double>(0, 1);
auto tick = std::chrono::system_clock::now();
auto tock = tick;
for (int iteration = 0; temperature > stop_temperature; iteration++) {
auto new_placement{ placement };
do {
std::array<int,2> ridx { choice(rng), choice(rng) };
std::tie(ridx[0], ridx[1]) = std::tuple<int,int>{ std::min(ridx[0], ridx[1]), std::abs(ridx[0]-ridx[1]) };
auto iter = new_placement.begin();
for (auto i : ridx) {
std::advance(iter, i);
std::get<0>(iter->second) += int(gauss(rng)*std::log(temperature)*20);
std::get<1>(iter->second) += int(gauss(rng)*std::log(temperature));
}
} while (is_overlapping(new_placement));
double new_energy = fast_route_estimate(new_placement, inputs, outputs, gates);
if (new_energy < current_energy or dice(rng) < std::exp((current_energy-new_energy)/temperature)) {
placement = std::move(new_placement);
current_energy = new_energy;
if (current_energy < best_energy) {
best_placement = placement;
best_energy = current_energy;
}
}
temperature *= cooling_rate;
auto now = std::chrono::system_clock::now();
if (now - tick > 50ms) {
std::cout << std::format("Temperature {:3.3f}, Energy {} \r", temperature, current_energy) << std::flush;
tick = now;
}
if (now - tock > step_timeout) break;
tock = now;
}
std::cout << std::format("Temperature {:3.3f}, Energy {} \n", temperature, best_energy);
return best_placement;
}

void draw_schematic(
const std::set<int>& inputs, const std::set<int>& outputs,
const std::unordered_map<int, std::pair<int, std::vector<int>>>& gates,
const std::vector<std::string> names,
const std::vector<std::vector<std::tuple<int,int>>>& wires,
const std::vector<std::tuple<int,int>>& solders,
const std::unordered_map<int, std::tuple<int,int>>& placement,
size_t canvas_w, size_t canvas_h) {
draw_t draw(canvas_w*5, canvas_h*5);
static const std::unordered_map<int, void(draw_t::*)(std::tuple<int,int>)> DRAWFN {
{NOT, &draw_t::inv}, {NAND, &draw_t::nand}
};
// draw stdcells
for (const auto& [name, values] : gates) {
const auto& [gatetype, _] = values;
const auto& [x, y] = placement.at(name);
(draw.*DRAWFN.at(gatetype))({x*5,y*5});
}
// draw powergrid
for (size_t y = 25; y < canvas_h*5; y+=200)
draw.line({0,y,canvas_w*5,y},{.width=2});
// draw wires
for (const auto& wire : wires) {
auto [x1, y1] = wire.front();
for (const auto& [x2, y2] : wire | std::views::drop(1)) {
draw.line({x1*5, y1*5, x2*5, y2*5},{.fill=0,.width=2});
std::tie(x1, y1) = std::tuple{x2, y2};
}
}
// draw solder joints
for (const auto& [x, y] : solders) {
draw.ellipse({x*5-2, y*5-2, x*5+2, y*5+2},{.fill=0,.outline=0,.width=1});
}
// draw port labels
for (const auto& [sink, values] : gates) {
const auto& [sinkgatetype, inports] = values;
for (const auto& [i, source] : std::views::enumerate(inports)) {
if (inputs.contains(source)) {
auto [x, y] = placement.at(sink) + PORT_OFFSET.at(sinkgatetype)[i];
y = y + 2;
draw.text({x*5-12, y*5-8}, names[source], "rt");
draw.line({x*5-10,y*5-2,x*5-6,y*5-2}, {.fill=0,.width=1});
draw.line({x*5-10,y*5-1,x*5-4,y*5-1}, {.fill=0,.width=1});
draw.line({x*5-10,y*5-0,x*5-2,y*5-0}, {.fill=0,.width=1});
draw.line({x*5-10,y*5+1,x*5-4,y*5+1}, {.fill=0,.width=1});
draw.line({x*5-10,y*5+2,x*5-6,y*5+2}, {.fill=0,.width=1});
}
}
}
for (const auto& output : outputs) {
const auto& gatetype = gates.at(output).first;
auto [x, y] = placement.at(output) + PORT_OFFSET.at(gatetype).back();
draw.text({x*5+10, y*5-8}, names[output], "lt");
draw.line({x*5+8,y*5-2,x*5+4,y*5-2}, {.fill=0,.width=1});
draw.line({x*5+8,y*5-1,x*5+2,y*5-1}, {.fill=0,.width=1});
draw.line({x*5+8,y*5-0,x*5+0,y*5-0}, {.fill=0,.width=1});
draw.line({x*5+8,y*5+1,x*5+2,y*5+1}, {.fill=0,.width=1});
draw.line({x*5+8,y*5+2,x*5+4,y*5+2}, {.fill=0,.width=1});
}
draw.write_png(schematic_filename);
}

int main(int argc, char *argv[]) {
auto [inputs, outputs, gates, names] = parse(argc, argv);
if (gates.empty()) return 0;
auto placement = place(inputs, outputs, gates);
for (double slackness = 1.0; slackness < 10.; slackness *= 1.05) {
std::cout << "slackness: " << slackness << std::endl;
decltype(placement) micro_placement(placement);
auto [canvas_w, canvas_h] = snap_to_microgrid(micro_placement, gates);
auto [cost, wires, solders] = route(inputs, outputs, gates, micro_placement, canvas_w, canvas_h);
if (cost < 0) continue;
std::cout << "total wire length: " << cost << std::endl;
draw_schematic(inputs, outputs, gates, names, wires, solders, micro_placement, canvas_w, canvas_h);
std::cout << "schematic generated." << std::endl;
return 0;
}
std::cout << "error: all routing attempts failed, no schematic generated." << std::endl;
return 0;
}

Here’s an analysis of the code by DeepSeek-R1:

Expand analysis
This program is a tool for generating standard CMOS circuit schematics, supporting BLIF format input and PNG image output. Below is an interpretation of its core functionality and workflow:
  1. Input Parsing (parse function)

    • Functionality: Parses the BLIF file to extract circuit input/output ports and logic gate information.
    • Key Data Structures:
      • inputs/outputs: Store input/output port IDs.
      • gates: A hash table storing logic gates, with gate IDs as keys and gate types (e.g., NOT, NAND) and their connected ports as values.
      • names: Maps gate type names to unique IDs, supporting dynamic expansion.
    • Processing Logic:
      • Parses .inputs, .outputs, and .subckt sections line by line to extract port and subcircuit information.
      • Uses the parse_name function to convert string-type gate names to integer IDs for subsequent processing.
  2. Placement Optimization (place function)

    • Algorithm: Uses simulated annealing for placement optimization, aiming to minimize routing cost and area.
    • Key Parameters:
      • initial_temperature: Controls the probability of accepting worse solutions early in the algorithm.
      • cooling_rate: Gradually reduces temperature to converge to an optimal solution.
      • area_cost and cross_track_penalty: Penalize area usage and cross-track routing, respectively.
    • Workflow:
      • Initial Placement: Randomly generates gate positions, ensuring no overlaps.
      • Iterative Optimization: Adjusts gate positions, calculates new layout costs, and accepts or rejects solutions based on the Metropolis criterion.
      • Termination: Stops when temperature drops below a threshold or after a timeout.
  3. Routing (route function)

    • Objective: Generates paths for connections between logic gates while avoiding conflicts.
    • Key Steps:
      • Obstacle Marking: Uses the mask array to mark non-routable areas (e.g., space around gates).
      • Path Search: Employs BFS to search backward from target ports to source ports, recording paths.
      • Cost Calculation: Accumulates path length and cross-track penalties.
    • Output:
      • paths: Stores coordinates of all connection paths.
      • solders: Records solder point positions.
  4. Drawing (draw_t struct)

    • Functionality: Renders the placement and routing results as a PNG image.
    • Core Methods:
      • Basic Shapes: line, ellipse for drawing lines and solder points.
      • Logic Gate Drawing: Functions like nmos, pmos, inv, nand implement CMOS gate rendering.
      • Text Labels: The text function uses predefined font bitmaps to label port names.
    • PNG Generation: Manually constructs the PNG file format (including IHDR, IDAT, IEND chunks), combines DEFLATE compression and CRC checks, and outputs the final image.
  5. Main Workflow (main function)

    • Input Parsing: Reads the BLIF file and extracts circuit information.
    • Placement Optimization: Calls place to generate the initial layout.
    • Grid Alignment: Uses snap_to_microgrid to align layout coordinates to a micro-grid.
    • Multiple Routing Attempts: Incrementally increases slackness (slackness) and calls route until successful.
    • Image Generation: After successful routing, calls draw_schematic to render the schematic and save it as a PNG.

Key Technologies and Challenges

  • Simulated Annealing: Balances global search and local optimization to avoid local minima.
  • Pathfinding Algorithm: Efficiently finds feasible paths in dynamic obstacle environments.
  • Low-Level Drawing: Directly manipulates pixel data and generates PNG-compliant files, handling compression and checksum details.

Summary

This program automates the generation of schematics from logical descriptions by parsing circuit definitions, optimizing placement, performing automatic routing, and rendering. Its core strength lies in combining algorithmic optimization (simulated annealing) with low-level graphics processing, making it suitable for rapid visualization of small-to-medium-scale CMOS circuits.

Usage

The input is a netlist in BLIF format. You can use the open-source tool Yosys to synthesize it from Verilog.

For example, I first asked DeepSeek to write a 4-bit adder as an example:

adder4.v
1
2
3
4
5
6
7
8
9
10
11
12
module adder4 (  
input [3:0] a, // 4-bit input a
input [3:0] b, // 4-bit input b
input cin, // Carry input
output [3:0] sum, // 4-bit sum output
output cout // Carry output
);

// Implement the adder using continuous assignment
assign {cout, sum} = a + b + cin;

endmodule

Next, create a standard cell library. Currently, the code only supports NOT and NAND gates, so we need to instruct Yosys to use only these two cell types.

nandcell.lib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
library(demo) {  
cell(NOT) {
area: 3;
pin(A) { direction: input; }
pin(Y) { direction: output;
function: "A'"; }
}
cell(NAND) {
area: 4;
pin(A) { direction: input; }
pin(B) { direction: input; }
pin(Y) { direction: output;
function: "(A*B)'"; }
}
}

Launch Yosys and run the following commands:

1
2
3
4
5
6
7
read_verilog adder4.v  
hierarchy -check
abc -liberty nandcell.lib
synth
splitnets -ports
opt
write_blif -top adder4

The last step outputs the netlist in BLIF format. Copy and save it to a file named adder4.blif.

adder4.blif
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Generated by Yosys 0.51+104 (git sha1 c08f72b80, g++ 13.3.0-6ubuntu2~24.04 -fPIC -O3)  

.model adder4
.inputs a[0] a[1] a[2] a[3] b[0] b[1] b[2] b[3] cin
.outputs sum[0] sum[1] sum[2] sum[3] cout
.names $false
.names $true
1
.names $undef
.subckt NOT A=a[3] Y=$abc$170$new_n15
.subckt NOT A=b[3] Y=$abc$170$new_n16
.subckt NOT A=a[2] Y=$abc$170$new_n17
.subckt NOT A=b[2] Y=$abc$170$new_n18
.subckt NOT A=a[1] Y=$abc$170$new_n19
.subckt NOT A=b[1] Y=$abc$170$new_n20
.subckt NOT A=a[0] Y=$abc$170$new_n21
.subckt NOT A=b[0] Y=$abc$170$new_n22
.subckt NOT A=cin Y=$abc$170$new_n23
.subckt NAND A=a[3] B=b[3] Y=$abc$170$new_n24
.subckt NAND A=a[2] B=b[2] Y=$abc$170$new_n25
.subckt NAND A=$abc$170$new_n17 B=$abc$170$new_n18 Y=$abc$170$new_n26
.subckt NAND A=$abc$170$new_n25 B=$abc$170$new_n26 Y=$abc$170$new_n27
.subckt NOT A=$abc$170$new_n27 Y=$abc$170$new_n28
.subckt NAND A=a[1] B=b[1] Y=$abc$170$new_n29
.subckt NAND A=a[0] B=b[0] Y=$abc$170$new_n30
.subckt NAND A=$abc$170$new_n21 B=$abc$170$new_n22 Y=$abc$170$new_n31
.subckt NAND A=$abc$170$new_n30 B=$abc$170$new_n31 Y=$abc$170$new_n32
.subckt NOT A=$abc$170$new_n32 Y=$abc$170$new_n33
.subckt NAND A=cin B=$abc$170$new_n33 Y=$abc$170$new_n34
.subckt NAND A=$abc$170$new_n30 B=$abc$170$new_n34 Y=$abc$170$new_n35
.subckt NOT A=$abc$170$new_n35 Y=$abc$170$new_n36
.subckt NAND A=$abc$170$new_n19 B=$abc$170$new_n20 Y=$abc$170$new_n37
.subckt NAND A=$abc$170$new_n29 B=$abc$170$new_n37 Y=$abc$170$new_n38
.subckt NOT A=$abc$170$new_n38 Y=$abc$170$new_n39
.subckt NAND A=$abc$170$new_n35 B=$abc$170$new_n39 Y=$abc$170$new_n40
.subckt NAND A=$abc$170$new_n29 B=$abc$170$new_n40 Y=$abc$170$new_n41
.subckt NOT A=$abc$170$new_n41 Y=$abc$170$new_n42
.subckt NAND A=$abc$170$new_n28 B=$abc$170$new_n41 Y=$abc$170$new_n43
.subckt NAND A=$abc$170$new_n25 B=$abc$170$new_n43 Y=$abc$170$new_n44
.subckt NOT A=$abc$170$new_n44 Y=$abc$170$new_n45
.subckt NAND A=$abc$170$new_n15 B=$abc$170$new_n16 Y=$abc$170$new_n46
.subckt NAND A=$abc$170$new_n24 B=$abc$170$new_n46 Y=$abc$170$new_n47
.subckt NOT A=$abc$170$new_n47 Y=$abc$170$new_n48
.subckt NAND A=$abc$170$new_n44 B=$abc$170$new_n48 Y=$abc$170$new_n49
.subckt NAND A=$abc$170$new_n24 B=$abc$170$new_n49 Y=cout
.subckt NAND A=$abc$170$new_n23 B=$abc$170$new_n32 Y=$abc$170$new_n51
.subckt NAND A=$abc$170$new_n34 B=$abc$170$new_n51 Y=$abc$170$new_n52
.subckt NOT A=$abc$170$new_n52 Y=sum[0]
.subckt NAND A=$abc$170$new_n36 B=$abc$170$new_n38 Y=$abc$170$new_n54
.subckt NAND A=$abc$170$new_n40 B=$abc$170$new_n54 Y=$abc$170$new_n55
.subckt NOT A=$abc$170$new_n55 Y=sum[1]
.subckt NAND A=$abc$170$new_n27 B=$abc$170$new_n42 Y=$abc$170$new_n57
.subckt NAND A=$abc$170$new_n43 B=$abc$170$new_n57 Y=$abc$170$new_n58
.subckt NOT A=$abc$170$new_n58 Y=sum[2]
.subckt NAND A=$abc$170$new_n45 B=$abc$170$new_n47 Y=$abc$170$new_n60
.subckt NAND A=$abc$170$new_n49 B=$abc$170$new_n60 Y=$abc$170$new_n61
.subckt NOT A=$abc$170$new_n61 Y=sum[3]
.end

Compile cirschem.cpp: g++ cirschem.cpp -std=c++26 -O3

Run: ./a.out adder4.blif

After waiting about half a minute for placement and routing to complete, the output will be saved as schematic.png.